Advertisements
Advertisements
Question
If x3 + 6x2 + kx + 6 is exactly divisible by (x + 2), then k = ?
Options
−6
−7
−8
11
Solution
11
Explanation;
Hint:
p(x) = x3 + 6x2 + kx + 6
Given p(−2) = 0
(−2)3 + 6(−2)2 + k(−2) + 6 = 0
−8 + 24 – 2k + 6 = 0
22 – 2k = 0
k = `22/2`
= 11
APPEARS IN
RELATED QUESTIONS
Find the remainder when x3 + 3x2 + 3x + 1 is divided by `x - 1/2`
What number should be subtracted from x3 + 3x2 – 8x + 14 so that on dividing it by x – 2, the remainder is 10?
Polynomials bx2 + x + 5 and bx3 − 2x + 5 are divided by polynomial x - 3 and the remainders are m and n respectively. If m − n = 0 then find the value of b.
What number should be subtracted from x2 + x + 1 so that the resulting polynomial is exactly divisible by (x-2) ?
When x3 + 3x2 – kx + 4 is divided by (x – 2), the remainder is k. Find the value of k.
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + `(1)/(2)`.
Use the Remainder Theorem to factorise the following expression:
2x3 + x2 – 13x + 6
If on dividing 2x3 + 6x2 – (2k – 7)x + 5 by x + 3, the remainder is k – 1 then the value of k is
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 3x2 + 4x + 50, g(x) = x – 3
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 6x2 + 2x – 4, g(x) = `1 - 3/2 x`