Advertisements
Advertisements
Question
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 3x2 + 4x + 50, g(x) = x – 3
Solution
Given, p(x) = x3 – 3x2 + 4x + 50 and g(x) = x – 3
Here, zero of g(x) is 3.
When we divide p(x) by g(x) using remainder theorem, we get the remainder p(3).
∴ p(3) = (3)3 – 3(3)2 + 4(3) + 50
= 27 – 27 + 12 + 50
= 62
Hence, remainder is 62.
APPEARS IN
RELATED QUESTIONS
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x + π.
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
2x – 1
When x3 + 2x2 – kx + 4 is divided by x – 2, the remainder is k. Find the value of constant k.
Find the value of ‘m’, if mx3 + 2x2 – 3 and x2 – mx + 4 leave the same remainder when each is divided by x – 2.
Using remainder theorem, find the value of m if the polynomial f(x)= x3 + 5x2 -mx +6 leaves a remainder 2m when divided by (x-1),
Find the remainder (without division) on dividing 3x2 + 5x – 9 by (3x + 2)
Find ‘a’ if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
If on dividing 4x2 – 3kx + 5 by x + 2, the remainder is – 3 then the value of k is
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by x + 3
What is the remainder when x2018 + 2018 is divided by x – 1