Advertisements
Advertisements
Question
What is the remainder when x2018 + 2018 is divided by x – 1
Solution
p(x) = x2018 + 2018
When it is divided by x – 1,
p(1) = 12018 + 2018
= 1 + 2018
= 2019
The remainder is 2019.
APPEARS IN
RELATED QUESTIONS
Find the remainder when x3 + 3x2 + 3x + 1 is divided by `x - 1/2`
Polynomials bx2 + x + 5 and bx3 − 2x + 5 are divided by polynomial x - 3 and the remainders are m and n respectively. If m − n = 0 then find the value of b.
Find the values of p and q in the polynomial f(x)= x3 - px2 + 14x -q, if it is exactly divisible by (x-1) and (x-2).
What number should be added to 2x3 - 3x2 + 7x -8 so that the resulting polynomial is exactly divisible by (x-1) ?
A polynomial f(x) when divided by (x - 1) leaves a remainder 3 and when divided by (x - 2) leaves a remainder of 1. Show that when its divided by (x - i)(x - 2), the remainder is (-2x + 5).
Find the value of p if the division of px3 + 9x2 + 4x - 10 by (x + 3) leaves the remainder 5.
Find ‘a’ if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
When 2x3 – x2 – 3x + 5 is divided by 2x + 1, then the remainder is
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by x + 3
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 3x2 + 4x + 50, g(x) = x – 3