Advertisements
Advertisements
Question
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 2x2 – 4x – 1, g(x) = x + 1
Solution
Given, p(x) = x3 – 2x2 – 4x – 1 and g(x) = x + 1
Here, zero of g(x) is –1.
When we divide p(x) by g(x) using remainder theorem, we get the remainder p(–1)
∴ p(–1) = (–1)2 – 2(–1)2 – 4(–1) – 1
= –1 – 2 + 4 – 1
= 4 – 4
= 0
Hence, remainder is 0.
APPEARS IN
RELATED QUESTIONS
Find the remainder when x3 + 3x2 + 3x + 1 is divided by `x - 1/2`
Find 'a' if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
Find the remainder when x4 + 1 is divided by x + 1.
The polynomials 2x3 – 7x2 + ax – 6 and x3 – 8x2 + (2a + 1)x – 16 leaves the same remainder when divided by x – 2. Find the value of ‘a’.
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 − 19x + 6
Find the values of a and b when the polynomials f(x)= 2x2 -5x +a and g(x)= 2x2 + 5x +b both have a factor (2x+1).
What number should be subtracted from x2 + x + 1 so that the resulting polynomial is exactly divisible by (x-2) ?
What number must be added to 2x3 – 7x2 + 2x so that the resulting polynomial leaves the remainder – 2 when divided by 2x – 3?
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 2x2 – 4x – 1; g(x) = x + 1
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = 4x3 – 12x2 + 14x – 3, g(x) = 2x – 1