Advertisements
Advertisements
Question
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
2x – 1
Solution
By remainder theorem we know that when a polynomial f(x) is divided by x – a, then the remainder is f(a).
Let f(x) = 2x3 + 3x2 – 5x – 6
`f(1/2) = 2(1/2)^3 + 3(1/2)^2 - 5(1/2) - 6`
= `1/4 + 3/4 - 5/2 - 6`
= `-5/2 - 5`
= `(-15)/2 ≠ 0`
Thus, (2x – 1) is not a factor of the polynomial f(x).
APPEARS IN
RELATED QUESTIONS
Polynomials bx2 + x + 5 and bx3 − 2x + 5 are divided by polynomial x - 3 and the remainders are m and n respectively. If m − n = 0 then find the value of b.
What number should be added to polynomial f(x)= 12x3 + 16x2 - 5x - 8 so that the resulting polynomial is exactly divisible by (2x - 1) ?
Find the remainder when the polynomial f(x) = 2x4 - 6x3 + 2x2 - x + 2 is divided by x + 2.
Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where f(x) = 2x2 – 5x + 1
Find the remainder (without division) on dividing f(x) by (2x + 1) where f(x) = 3x3 – 7x2 + 4x + 11
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3)x – 6 leave the same remainder. Find the value of ‘p’.
When 2x3 – 9x2 + 10x – p is divided by (x + 1), the remainder is – 24.Find the value of p.
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2
The polynomial p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7 when divided by x + 1 leaves the remainder 19. Find the values of a. Also find the remainder when p(x) is divided by x + 2.
A polynomial in ‘x’ is divided by (x – a) and for (x – a) to be a factor of this polynomial, the remainder should be ______.