Advertisements
Advertisements
Question
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3)x – 6 leave the same remainder. Find the value of ‘p’.
Solution
By dividing
x3 – px2 + x + 6
And 2x3 – x2 – (p + 3)x – 6
By x – 3, the remainder is same
Let x – 3 = 0, then x = 3
Now by Remainder Theorem,
Let p(x) = x3 – px2 + x + 6
p(3) = (3)3 – p(3)2 + 3 + 6
= 27 – 9p + 9
= 36 – 9p
And q(x) = 2x3 – x2 – (p + 3)x – 6
q(3) = 2(3)2 – (3)2 – (3)2 – (p + 3) × 3 – 6
= 2 × 27 – 9 – 3p – 9 – 6
= 54 – 24 – 3p
= 30 – 3p
∵ The remainder in each case is same
∴ 36 – 9p = 30 – 3p
36 – 30 = 9p – 3p
`\implies` 6 = 6p
`\implies p = (6)/(6) = 1`
∴ p = 1
APPEARS IN
RELATED QUESTIONS
Using the Remainder Theorem, factorise the following completely:
3x3 + 2x2 – 19x + 6
Find the remainder when x3 + 3x2 – 12x + 4 is divided by x – 2.
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(54m3 + 18m2 − 27m + 5) ; (m − 3)
If the polynomial y3 − 5y2 + 7y + m is divided by y + 2 and the remainder is 50 then find the value of m.
Polynomials bx2 + x + 5 and bx3 − 2x + 5 are divided by polynomial x - 3 and the remainders are m and n respectively. If m − n = 0 then find the value of b.
Find without division, the remainder in the following:
5x2 - 9x + 4 is divided by (x - 2)
Find without division, the remainder in the following :
x3 + 8x2 + 7x- 11 is divisible by (x+4)
What number should be added to 2x3 - 3x2 + 7x -8 so that the resulting polynomial is exactly divisible by (x-1) ?
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
The remainder, when x3 – x2 + x – 1 is divided by x + 1, is ______.