Advertisements
Advertisements
प्रश्न
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3)x – 6 leave the same remainder. Find the value of ‘p’.
उत्तर
By dividing
x3 – px2 + x + 6
And 2x3 – x2 – (p + 3)x – 6
By x – 3, the remainder is same
Let x – 3 = 0, then x = 3
Now by Remainder Theorem,
Let p(x) = x3 – px2 + x + 6
p(3) = (3)3 – p(3)2 + 3 + 6
= 27 – 9p + 9
= 36 – 9p
And q(x) = 2x3 – x2 – (p + 3)x – 6
q(3) = 2(3)2 – (3)2 – (3)2 – (p + 3) × 3 – 6
= 2 × 27 – 9 – 3p – 9 – 6
= 54 – 24 – 3p
= 30 – 3p
∵ The remainder in each case is same
∴ 36 – 9p = 30 – 3p
36 – 30 = 9p – 3p
`\implies` 6 = 6p
`\implies p = (6)/(6) = 1`
∴ p = 1
APPEARS IN
संबंधित प्रश्न
Find 'a' if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
When the polynomial x3 + 2x2 – 5ax – 7 is divided by (x – 1), the remainder is A and when the polynomial x3 + ax2 – 12x + 16 is divided by (x + 2), the remainder is B. Find the value of ‘a’ if 2A + B = 0.
Find without division, the remainder in the following:
8x2 - 2x + 1 is divided by (2x+ 1)
What number should be subtracted from x2 + x + 1 so that the resulting polynomial is exactly divisible by (x-2) ?
Find the remainder (without divisions) on dividing f(x) by x – 2, where f(x) = 5x2 – 1x + 4
Find the remainder (without divisions) on dividing f(x) by x – 2, where f(x) = 2x3 – 7x2 + 3
What number must be subtracted from 2x2 – 5x so that the resulting polynomial leaves the remainder 2, when divided by 2x + 1 ?
When 2x3 – x2 – 3x + 5 is divided by 2x + 1, then the remainder is
If x51 + 51 is divided by x + 1, the remainder is ______.