Advertisements
Advertisements
Question
Using the Remainder Theorem, factorise the following completely:
3x3 + 2x2 – 19x + 6
Solution
Let P(x) = 3x3 + 2x2 – 19x + 6
By hit and trial method,
P(1) = 3(1)3 + 2(1)2 – 19(1) + 6
= 3 + 2 – 19 + 6
= –8 ≠ 0
P(–1) = 3(–1)3 + 2(–1)2 – 19(–1) + 6
= –3 + 2 + 19 + 6
= 24 ≠ 0
P(2) = 3(2)3 + 2(2)2 – 19(2) + 6
= 24 + 8 – 38 + 6
= 0
Thus, (x – 2) is a factor of P(x).
Now,
3x2 + 8x – 3
`x - 2")"overline(3x^3 + 2x^2 - 19x + 6)`
3x3 – 6x2
– +
8x2 – 19x + 6
8x2 – 16x
– +
– 3x + 6
– 3x + 6
+ –
0
∴ 3x3 + 2x2 – 19x + 6 = (x – 2)(3x2 + 8x – 3)
= (x – 2)(3x2 + 9x – x – 3)
= (x – 2)(3x(x + 3) – 1(x + 3))
= (x – 2)(x + 3)(3x – 1)
APPEARS IN
RELATED QUESTIONS
Check whether 7 + 3x is a factor of 3x3 + 7x.
Find the remainder when x3 + 3x2 – 12x + 4 is divided by x – 2.
What number should be added to 3x3 – 5x2 + 6x so that when resulting polynomial is divided by x – 3, the remainder is 8?
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 − 19x + 6
Using the Remainder Theorem, factorise the following completely:
4x3 + 7x2 – 36x – 63
Using remainder theorem, find the value of m if the polynomial f(x)= x3 + 5x2 -mx +6 leaves a remainder 2m when divided by (x-1),
What number should be subtracted from x2 + x + 1 so that the resulting polynomial is exactly divisible by (x-2) ?
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + `(1)/(2)`.
Find the remainder (without division) when 2x3 – 3x2 + 7x – 8 is divided by x – 1 (2000)
Find the remainder (without division) on dividing 3x2 + 5x – 9 by (3x + 2)