English

Using the Remainder Theorem, factorise the following completely: 3x3 + 2x2 – 19x + 6 - Mathematics

Advertisements
Advertisements

Question

Using the Remainder Theorem, factorise the following completely:

3x3 + 2x2 – 19x + 6

Sum

Solution

Let P(x) = 3x3 + 2x2 – 19x + 6

By hit and trial method,

P(1) = 3(1)3 + 2(1)2 – 19(1) + 6

= 3 + 2 – 19 + 6

= –8 ≠ 0

P(–1) = 3(–1)3 + 2(–1)2 – 19(–1) + 6

= –3 + 2 + 19 + 6

= 24 ≠ 0

P(2) = 3(2)3 + 2(2)2 – 19(2) + 6

= 24 + 8 – 38 + 6

= 0

Thus, (x – 2) is a factor of P(x).

Now,

            3x2 + 8x – 3
`x - 2")"overline(3x^3 + 2x^2 - 19x + 6)`
           3x3 – 6x2
            –    +                           
                    8x2 – 19x + 6
                    8x2 – 16x
                  –       +                  
                           – 3x + 6
                           – 3x + 6
                           +     –          
                                  0           

∴ 3x3 + 2x2 – 19x + 6 = (x – 2)(3x2 + 8x – 3)

= (x – 2)(3x2 + 9x – x – 3)

= (x – 2)(3x(x + 3) – 1(x + 3))

= (x – 2)(x + 3)(3x – 1)

shaalaa.com
  Is there an error in this question or solution?
2011-2012 (March)

APPEARS IN

Video TutorialsVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×