Advertisements
Advertisements
Question
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 6x2 + 2x – 4, g(x) = `1 - 3/2 x`
Solution
Given, p(x) = x3 – 6x2 + 2x – 4 and g(x) = `1 - 3/2 x`
Here, zero of g(x) is `2/3`.
When we divide p(x) by g(x) using remainder theorem, we get the remainder `p(2/3)`.
∵ `p(2/3) = (2/3)^3 - 6(2/3)^2 + 2(2/3) - 4`
= `8/27 - 6 xx 4/9 + 2 xx 2/3 - 4`
= `8/27 - 24/9 + 4/3 - 4`
= `(8 - 72 + 36 - 108)/27`
= `(-136)/27`
Hence, remainder is `(-136)/27`.
APPEARS IN
RELATED QUESTIONS
Find the remainder when x3 – ax2 + 6x – a is divided by x – a.
What number should be added to 3x3 – 5x2 + 6x so that when resulting polynomial is divided by x – 3, the remainder is 8?
Using the Remainder Theorem, factorise the expression 3x3 + 10x2 + x – 6. Hence, solve the equation 3x3 + 10x2 + x – 6 = 0
Find the value of ‘m’, if mx3 + 2x2 – 3 and x2 – mx + 4 leave the same remainder when each is divided by x – 2.
Find the number which should be added to x2 + x + 3 so that the resulting polynomial is completely divisible by (x + 3).
What number should be added to 2x3 - 3x2 + 7x -8 so that the resulting polynomial is exactly divisible by (x-1) ?
Find the remainder (without division) on dividing 3x2 + 5x – 9 by (3x + 2)
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 3x2 + 4x + 50, g(x) = x – 3
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2