Advertisements
Advertisements
Question
Find the remainder when x3 – ax2 + 6x – a is divided by x – a.
Solution 1
Let p(x) = x3 – ax2 + 6x – a
x - a = 0
∴ x = a
∴ Remainder = (a)3 - a(a)2 + 6(a) - a
= a3 - a3 + 6a - a
= 5a
Therefore, the remainder obtained is 5a.
Solution 2
By long division,
Therefore, when x3 − ax2 + 6x − a is divided by x − a, the remainder obtained is 5a.
APPEARS IN
RELATED QUESTIONS
Find ‘a‘ if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leave the same remainder when divided by x + 3.
Using the Remainder Theorem, factorise the following completely:
3x3 + 2x2 – 23x – 30
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(54m3 + 18m2 − 27m + 5) ; (m − 3)
Find without division, the remainder in the following:
2x3 - 3x2 + 6x - 4 is divisible by (2x-3)
Find the values of a and b when the polynomials f(x)= 2x2 -5x +a and g(x)= 2x2 + 5x +b both have a factor (2x+1).
What number should be added to 2x3 - 3x2 + 7x -8 so that the resulting polynomial is exactly divisible by (x-1) ?
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x - 4
Using remainder theorem, find the value of a if the division of x3 + 5x2 – ax + 6 by (x – 1) leaves the remainder 2a.
Find ‘a’ if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
If on dividing 2x3 + 6x2 – (2k – 7)x + 5 by x + 3, the remainder is k – 1 then the value of k is