Advertisements
Advertisements
प्रश्न
Find the remainder when x3 – ax2 + 6x – a is divided by x – a.
उत्तर १
Let p(x) = x3 – ax2 + 6x – a
x - a = 0
∴ x = a
∴ Remainder = (a)3 - a(a)2 + 6(a) - a
= a3 - a3 + 6a - a
= 5a
Therefore, the remainder obtained is 5a.
उत्तर २
By long division,
Therefore, when x3 − ax2 + 6x − a is divided by x − a, the remainder obtained is 5a.
APPEARS IN
संबंधित प्रश्न
Find 'a' if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
x + 2
What number should be subtracted from x3 + 3x2 – 8x + 14 so that on dividing it by x – 2, the remainder is 10?
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
Find without division, the remainder in the following:
5x3 - 7x2 +3 is divided by (x-1)
Find the values of a and b when the polynomial f(x)= ax3 + 3x2 +bx -3 is exactly divisible by (2x+3) and leaves a remainder -3 when divided by (x+2).
Use the Remainder Theorem to factorise the following expression:
2x3 + x2 – 13x + 6
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = 4x3 – 12x2 + 14x – 3; g(x) = 2x – 1
Check whether p(x) is a multiple of g(x) or not:
p(x) = 2x3 – 11x2 – 4x + 5, g(x) = 2x + 1
A polynomial in ‘x’ is divided by (x – a) and for (x – a) to be a factor of this polynomial, the remainder should be ______.