Advertisements
Advertisements
प्रश्न
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 6x2 + 2x – 4, g(x) = `1 - 3/2 x`
उत्तर
Given, p(x) = x3 – 6x2 + 2x – 4 and g(x) = `1 - 3/2 x`
Here, zero of g(x) is `2/3`.
When we divide p(x) by g(x) using remainder theorem, we get the remainder `p(2/3)`.
∵ `p(2/3) = (2/3)^3 - 6(2/3)^2 + 2(2/3) - 4`
= `8/27 - 6 xx 4/9 + 2 xx 2/3 - 4`
= `8/27 - 24/9 + 4/3 - 4`
= `(8 - 72 + 36 - 108)/27`
= `(-136)/27`
Hence, remainder is `(-136)/27`.
APPEARS IN
संबंधित प्रश्न
Use Remainder theorem to factorize the following polynomial:
`2x^3 + 3x^2 - 9x - 10`
Find ‘a‘ if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leave the same remainder when divided by x + 3.
When x3 + 3x2 – mx + 4 is divided by x – 2, the remainder is m + 3. Find the value of m.
Find the number which should be added to x2 + x + 3 so that the resulting polynomial is completely divisible by (x + 3).
Find ‘a’ if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
Using the Remainder Theorem, factorise completely the following polynomial:
3x2 + 2x2 – 19x + 6
Find the remainder when 3x3 – 4x2 + 7x – 5 is divided by (x + 3)
What is the remainder when x2018 + 2018 is divided by x – 1
The polynomial p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7 when divided by x + 1 leaves the remainder 19. Find the values of a. Also find the remainder when p(x) is divided by x + 2.
Without actual division, prove that 2x4 – 5x3 + 2x2 – x + 2 is divisible by x2 – 3x + 2. [Hint: Factorise x2 – 3x + 2]