Advertisements
Advertisements
प्रश्न
The polynomial p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7 when divided by x + 1 leaves the remainder 19. Find the values of a. Also find the remainder when p(x) is divided by x + 2.
उत्तर
Given, p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7
When we divide p(x) by x + 1, then we get the remainder p(–1).
Now, p(–1) = (–1)4 – 2(–1)3 + 3(–1)2 – a(–1) + 3a – 7
= 1 + 2 + 3 + a + 3a – 7
= 4a – 1
p(–1) = 19
⇒ 4a – 1 = 19
⇒ 4a = 20
∴ a = 5
∴ Required polynomial = x4 – 2x3 + 3x2 – 5x + 3(5) – 7 ...[Put a = 5 on p(x)]
= x4 – 2x3 + 3x2 – 5x + 15 – 7
= x4 – 2x3 + 3x2 – 5x + 8
When we divide p(x) by x + 2, then we get the remainder p(–2)
Now, p(–2) = (–2)4 – 2(–2)3 + 3(–2)2 – 5(–2) + 8
= 16 + 16 + 12 + 10 + 8
= 62
Hence, the value of a is 5 and remainder is 62.
APPEARS IN
संबंधित प्रश्न
The expression 2x3 + ax2 + bx – 2 leaves remainder 7 and 0 when divided by 2x – 3 and x + 2 respectively. Calculate the values of a and b.
Using the Remainder Theorem, factorise the following completely:
4x3 + 7x2 – 36x – 63
Find the values of m and n when the polynomial f(x)= x3 - 2x2 + m x +n has a factor (x+2) and leaves a remainder 9 when divided by (x+1).
Find the values of a and b when the polynomials f(x)= 2x2 -5x +a and g(x)= 2x2 + 5x +b both have a factor (2x+1).
Given f(x) = ax2 + bx + 2 and g(x) = bx2 + ax + 1. If x – 2 is a factor of f(x) but leaves the remainder – 15 when it divides g(x), find the values of a and b. With these values of a and b, factorise the expression. f(x) + g(x) + 4x2 + 7x.
By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial: x4 + 1; x – 1
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 2x2 – 4x – 1, g(x) = x + 1
Check whether p(x) is a multiple of g(x) or not:
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2
If x25 + x24 is divided by (x + 1), the result is ______.