Advertisements
Advertisements
प्रश्न
If the polynomial y3 − 5y2 + 7y + m is divided by y + 2 and the remainder is 50 then find the value of m.
उत्तर
Let p(y) = y3 − 5y2 + 7y + m
When the polynomial is divided by (y + 2), the remainder is 50. This means that the value of the polynomial when y = −2 is 50.
By remainder theorem,
Remainder = p(−2) = 50
∴ (−2)3 − 5 × (−2)2 + 7 (−2) + m = 50
⇒ − 8 − 5 × 4 -14 + m = 50
⇒ − 8 − 20 − 14 + m = 50
⇒ − 42 + m = 50
⇒ m = 50 + 42 = 92
Thus, the value of m is 92.
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x+1.
Find the remainder when x3 + 3x2 + 3x + 1 is divided by `x - 1/2`
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(54m3 + 18m2 − 27m + 5) ; (m − 3)
Find the values of a and b when the polynomial f(x)= ax3 + 3x2 +bx -3 is exactly divisible by (2x+3) and leaves a remainder -3 when divided by (x+2).
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by x – 2
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by 2x + 1
When 2x3 – 9x2 + 10x – p is divided by (x + 1), the remainder is – 24.Find the value of p.
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = 4x3 – 12x2 + 14x – 3; g(x) = 2x – 1
If x51 + 51 is divided by x + 1, the remainder is ______.
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2