Advertisements
Advertisements
प्रश्न
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + `(1)/(2)`.
उत्तर
p(x) = 4x3 - 3x2 + 2x - 4 ...(i)
By the remainder theorem the required remainder
= p`(-1/2)`.
Put x = `(-1/2)` in equation (i) we get
`p(-1/2) = 4(-1/2)^3 -3 (-1/2)^2 + 2(-1/2)-4`
= `4 xx (1/8) -3 xx (1)/(4) + 2 xx (-1/2)-4`
= `-(1)/(2) - (3)/(4) -1 -4`
= `(-2 -3 -4 -16)/(4)`
= `-(25)/(4)`
Hence, the remainder is `-(25)/(4)`.
APPEARS IN
संबंधित प्रश्न
What must be subtracted from 16x3 – 8x2 + 4x + 7 so that the resulting expression has 2x + 1 as a factor?
Using the Remainder Theorem, factorise the following completely:
3x3 + 2x2 – 19x + 6
Using the Remainder Theorem, factorise the following completely:
2x3 + x2 – 13x + 6
If the polynomial y3 − 5y2 + 7y + m is divided by y + 2 and the remainder is 50 then find the value of m.
Find the remainder (without division) on dividing f(x) by (2x + 1) where f(x) = 4x2 + 5x + 3
Find ‘a’ if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
What number must be subtracted from 2x2 – 5x so that the resulting polynomial leaves the remainder 2, when divided by 2x + 1 ?
Use the Remainder Theorem to factorise the following expression:
2x3 + x2 – 13x + 6
Check whether p(x) is a multiple of g(x) or not
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
If x51 + 51 is divided by x + 1, then the remainder is