Advertisements
Advertisements
प्रश्न
If ( x31 + 31) is divided by (x + 1) then find the remainder.
उत्तर
Let p(x) = x31 + 31.
Divisor = x + 1
∴ Let x = −1
By remainder theorem
Remainder = p(−1)
= (−1)31 + 31
= −1 + 31
= 30
Thus, the remainder when (x31 + 31) is divided by (x + 1) is 30.
APPEARS IN
संबंधित प्रश्न
Find the value of a, if the division of ax3 + 9x2 + 4x – 10 by x + 3 leaves a remainder 5.
The polynomials 2x3 – 7x2 + ax – 6 and x3 – 8x2 + (2a + 1)x – 16 leaves the same remainder when divided by x – 2. Find the value of ‘a’.
Using the Remainder Theorem, factorise the following completely:
2x3 + x2 – 13x + 6
When the polynomial x3 + 2x2 – 5ax – 7 is divided by (x – 1), the remainder is A and when the polynomial x3 + ax2 – 12x + 16 is divided by (x + 2), the remainder is B. Find the value of ‘a’ if 2A + B = 0.
Use remainder theorem and find the remainder when the polynomial g(x) = x3 + x2 – 2x + 1 is divided by x – 3.
When x3 + 3x2 – kx + 4 is divided by (x – 2), the remainder is k. Find the value of k.
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + 2
What number must be added to 2x3 – 7x2 + 2x so that the resulting polynomial leaves the remainder – 2 when divided by 2x – 3?
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 6x2 + 2x – 4, g(x) = `1 - 3/2 x`
4x2 – kx + 5 leaves a remainder 2 when divided by x – 1. The value of k is ______.