हिंदी

Show that m − 1 is a factor of m21 − 1 and m22 − 1. - Algebra

Advertisements
Advertisements

प्रश्न

Show that m − 1 is a factor of m21 − 1 and m22 − 1.

योग

उत्तर

Let p(m) = m21 − 1 and q(m) = m22 − 1.

Divisor = m − 1

Now, 

p(1) = (1)21 − 1

= 1 − 1

= 0

Therefore, by factor theorem (m − 1) is a factor of p(m) = m21 − 1.

Also, 

q(1) = (1)22 − 1

= 1 − 1

= 0

Therefore, by factor theorem (m − 1) is a factor of q(m) = m22 − 1.

Hence, (m − 1) is a factor of m21 − 1 and m22 − 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Polynomials - Practice Set 3.5 [पृष्ठ ५३]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 9 Standard Maharashtra State Board
अध्याय 3 Polynomials
Practice Set 3.5 | Q (11) | पृष्ठ ५३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×