Advertisements
Advertisements
प्रश्न
If x + a is a common factor of expressions f(x) = x2 + px + q and g(x) = x2 + mx + n; show that : `a = (n - q)/(m - p)`
उत्तर
f(x) = x2 + px + q
It is given that (x + a) is a factor of f(x).
∴ f(–a) = 0
`\implies` (–a)2 + p(–a) + q = 0
`\implies` a2 – pa + q = 0
`\implies` a2 = pa – q ...(i)
g(x) = x2 + mx + n
It is given that (x + a) is a factor of g(x).
∴ g(–a) = 0
`\implies` (–a)2 + m(–a) + n = 0
`\implies` a2 – ma + n = 0
`\implies` a2 = ma – n ...(ii)
From (i) and (ii), we get,
pa – q = ma – n
n – q = a(m – p)
`a = (n - q)/(m - p)`
Hence, proved.
APPEARS IN
संबंधित प्रश्न
Find the value of ‘k’ if (x – 2) is a factor of x3 + 2x2 – kx + 10. Hence determine whether (x + 5) is also a factor.
(3x + 5) is a factor of the polynomial (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15. Find the value of ‘a’, factorise the given polynomial completely.
If (x - 2) is a factor of x3 − mx2 + 10x − 20 then find the value of m.
Prove by factor theorem that
(3x-2) is a factor of 18x3 - 3x2 + 6x -12
Prove that (x-3) is a factor of x3 - x2 - 9x +9 and hence factorize it completely.
Find the value of the constant a and b, if (x – 2) and (x + 3) are both factors of expression x3 + ax2 + bx - 12.
If x – 2 is a factor of 2x3 - x2 - px - 2.
Find the value of p
Show that (x – 2) is a factor of 3x2 – x – 10 Hence factorise 3x2 – x – 10.
What number should be subtracted from 2x3 – 5x2 + 5x so that the resulting polynomial has 2x – 3 as a factor?
Find the value of 'a' if x – a is a factor of the polynomial 3x3 + x2 – ax – 81.