English

Using Remainder Theorem, factorise : x3 + 10x2 – 37x + 26 completely. - Mathematics

Advertisements
Advertisements

Question

Using Remainder Theorem, factorise : x3 + 10x2 – 37x + 26 completely.

Sum

Solution

By remainder theorem, 

For x = 1, the value of the given expression is the remainder. 

x3 + 10x2 – 37x + 26

= (1)3 + 10(1)2 – 37(1) + 26

= 1 + 10 – 37 + 26

= 37 – 37

= 0

x – 1 is a factor of x3 + 10x2 – 37x + 26.

            x2 + 11x – 26
`x - 1")"overline(x^3 + 10x^2 - 37x + 26)`
           x3 – x2                           
                    11x2 – 37x
                    11x2 – 11x            
                             – 26x + 26
                             – 26x + 26    
                                     0

∴ x3 + 10x2 – 37x + 26

= (x – 1)(x2 + 11x – 26)

= (x – 1)(x2 + 13x – 2x – 26)

= (x – 1)[x(x + 13) – 2(x + 13)]

= (x – 1)(x + 13)(x – 2)

∴ x3 + 10x2 – 37 + 26 = (x – 1)(x + 13)(x – 2)

shaalaa.com
Factorising a Polynomial Completely After Obtaining One Factor by Factor Theorem
  Is there an error in this question or solution?
Chapter 8: Remainder and Factor Theorems - Exercise 8 (C) [Page 112]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 8 Remainder and Factor Theorems
Exercise 8 (C) | Q 2 | Page 112
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×