Advertisements
Advertisements
Question
Prove that (5x + 4) is a factor of 5x3 + 4x2 – 5x – 4. Hence factorize the given polynomial completely.
Solution
f(x) = 5x3 + 4x2 – 5x – 4
Let 5x + 4 = 0, then 5x = -4
⇒ x = `(-4)/(5)`
∴ `f(-4/5) = 5(-4/5)^3 + 4(-4/5)^2 -5(-4/5) -4`
= `5 xx (-64/125) + 4 xx (16)/(25) + 4 - 4`
= `-(64)/(25) + (64)/(25) + 4 - 4` = 0
∵ `f(-4/5)` = 0
∴ (5x + 4) is a factor of f(x)
Now dividing f(x) by 5x + 4, we get
5x3 + 4x2 – 5x – 4
= (5x + 4)(x2 – 1)
= (5x + 4)[(x)2 – (1)2]
= (5x + 4)(x + 1)(x – 1)
`5x + 4")"overline(5x^3 + 4x^2 - 5x - 4)("x^2 - 1`
5x3 + 4x2
– –
–5x – 4
–5x – 4
+ +
x
APPEARS IN
RELATED QUESTIONS
Find the values of a and b in the polynomial f(x) = 2x3 + ax2 + bx + 10, if it is exactly divisible by (x+2) and (2x-1).
In the following two polynomials. Find the value of ‘a’ if x + a is a factor of each of the two:
x4 - a2x2 + 3x - a.
In the following two polynomials, find the value of ‘a’ if x – a is a factor of each of the two:
x6 - ax5 + x4 - ax3 + 3a + 2
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x2 - 3x + 5a
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x3 + 2ax2 + ax - 1
Show that x2 - 9 is factor of x3 + 5x2 - 9x - 45.
When 3x2 – 5x + p is divided by (x – 2), the remainder is 3. Find the value of p. Also factorise the polynomial 3x2 – 5x + p – 3.
Use factor theorem to factorise the following polynomials completely: x3 – 19x – 30
The polynomial 3x3 + 8x2 – 15x + k has (x – 1) as a factor. Find the value of k. Hence factorize the resulting polynomial completely.
For the polynomial x5 – x4 + x3 – 8x2 + 6x + 15, the maximum number of linear factors is ______.