Advertisements
Advertisements
प्रश्न
Prove that (5x + 4) is a factor of 5x3 + 4x2 – 5x – 4. Hence factorize the given polynomial completely.
उत्तर
f(x) = 5x3 + 4x2 – 5x – 4
Let 5x + 4 = 0, then 5x = -4
⇒ x = `(-4)/(5)`
∴ `f(-4/5) = 5(-4/5)^3 + 4(-4/5)^2 -5(-4/5) -4`
= `5 xx (-64/125) + 4 xx (16)/(25) + 4 - 4`
= `-(64)/(25) + (64)/(25) + 4 - 4` = 0
∵ `f(-4/5)` = 0
∴ (5x + 4) is a factor of f(x)
Now dividing f(x) by 5x + 4, we get
5x3 + 4x2 – 5x – 4
= (5x + 4)(x2 – 1)
= (5x + 4)[(x)2 – (1)2]
= (5x + 4)(x + 1)(x – 1)
`5x + 4")"overline(5x^3 + 4x^2 - 5x - 4)("x^2 - 1`
5x3 + 4x2
– –
–5x – 4
–5x – 4
+ +
x
APPEARS IN
संबंधित प्रश्न
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 – 23x – 30
The expression 4x3 – bx2 + x – c leaves remainders 0 and 30 when divided by x + 1 and 2x – 3 respectively. Calculate the values of b and c. Hence, factorise the expression completely.
Find the number that must be subtracted from the polynomial 3y3 + y2 – 22y + 15, so that the resulting polynomial is completely divisible by y + 3.
Show that (x – 1) is a factor of x3 – 7x2 + 14x – 8. Hence, completely factorise the given expression.
Show that (x – 1) is a factor of x3 – 7x2 + 14x – 8. Hence, completely factorise the given expression.
Using Remainder Theorem, factorise : x3 + 10x2 – 37x + 26 completely.
Using the Reminder Theorem, factorise of the following completely.
2x3 + x2 – 13x + 6
If the polynomials ax3 + 4x2 + 3x - 4 and x3 - 4x + a leave the same remainder when divided by (x - 3), find the value of a.
In the following two polynomials, find the value of ‘a’ if x – a is a factor of each of the two:
x6 - ax5 + x4 - ax3 + 3a + 2
Show that x2 - 9 is factor of x3 + 5x2 - 9x - 45.