Advertisements
Advertisements
प्रश्न
When 3x2 – 5x + p is divided by (x – 2), the remainder is 3. Find the value of p. Also factorise the polynomial 3x2 – 5x + p – 3.
उत्तर
f(x) = 3x2 – 5x+ p
Let (x – 2) = 0, then x = 2
f(2) = 3 (2)2 – 5(2) + p
= 3 x 4 – 10 + p
= 12 – 10 + p
= 2 + p
∵ Remainder = 3
∴ 2 + p = 3
⇒ p = 3 – 2 = 1
Hence p = 1
Now f(x) = 3x2 – 5x + p – 3
= 3x2 – 5x + 1 – 3
= 3x2 – 5x – 2
Dividing by (x – 2), we get
`x - 2")"overline(3x^2 - 5x - 2)("3x + 1`
3x2 – 6x
– +
x – 2
x – 2
– +
x
3x2 – 5x – 2 = (x – 2)(3x + 1).
APPEARS IN
संबंधित प्रश्न
The polynomial px3 + 4x2 – 3x + q is completely divisible by x2 – 1; find the values of p and q. Also, for these values of p and q, factorize the given polynomial completely.
Using remainder Theorem, factorise:
2x3 + 7x2 − 8x – 28 Completely
In the following two polynomials, find the value of ‘a’ if x – a is a factor of each of the two:
x6 - ax5 + x4 - ax3 + 3a + 2
If (x – 2) is a factor of 2x3 – x2 + px – 2, then
(i) find the value of p.
(ii) with this value of p, factorise the above expression completely
Prove that (5x + 4) is a factor of 5x3 + 4x2 – 5x – 4. Hence factorize the given polynomial completely.
Use factor theorem to factorise the following polynomials completely: 4x3 + 4x2 – 9x – 9
If x3 – 2x2 + px + q has a factor (x + 2) and leaves a remainder 9, when divided by (x + 1), find the values of p and q. With these values of p and q, factorize the given polynomial completely.
f 2x3 + ax2 – 11x + b leaves remainder 0 and 42 when divided by (x – 2) and (x – 3) respectively, find the values of a and b. With these values of a and b, factorize the given expression.
If (2x + 1) is a factor of both the expressions 2x2 – 5x + p and 2x2 + 5x + q, find the value of p and q. Hence find the other factors of both the polynomials.
If f(x) = 3x + 8; the value of f(x) + f(– x) is ______.