Advertisements
Advertisements
Question
A two digit positive number is such that the product of its digits is 6. If 9 is added to the number, the digits interchange their places. Find the number.
Solution
Let the digit at the tens place be ‘a’ and at units place be ‘b’.
The two-digit so formed will be 10a + b.
According to the first condition, the product of its digits is 6.
⇒ a x b =6
`=> x = 6/b` ...(1)
According to second condition
10a + b + 9 = 10b + a
`⇒ 9a - 9b = 9
`=> a - b = 1`
`=> a - 6/a= 1` From 1
`=> a^2 - a - 6 = 0`
`=> (a - 3)(a + 2) = 0`
`=> a= -3 or 2`
Since a digit cannot be negative, a = 2.
`=> b = 6/a = 6/2 = 3`
Thus, the required number = 10a + b = 10(2) + 3 = 23
APPEARS IN
RELATED QUESTIONS
The expression 4x3 – bx2 + x – c leaves remainders 0 and 30 when divided by x + 1 and 2x – 3 respectively. Calculate the values of b and c. Hence, factorise the expression completely.
Show that (x – 1) is a factor of x3 – 7x2 + 14x – 8. Hence, completely factorise the given expression.
Factorise x3 + 6x2 + 11x + 6 completely using factor theorem.
The polynomial px3 + 4x2 – 3x + q is completely divisible by x2 – 1; find the values of p and q. Also, for these values of p and q, factorize the given polynomial completely.
Using the factor theorem, show that (x - 2) is a factor of `x^3 + x^2 -4x -4 .`
Hence factorise the polynomial completely.
In the following two polynomials. Find the value of ‘a’ if x + a is a factor of each of the two:
x3 + ax2 - 2x + a + 4
In the following two polynomials, find the value of ‘a’ if x – a is a factor of each of the two:
x6 - ax5 + x4 - ax3 + 3a + 2
Use factor theorem to factorise the following polynomials completely: x3 – 19x – 30
f 2x3 + ax2 – 11x + b leaves remainder 0 and 42 when divided by (x – 2) and (x – 3) respectively, find the values of a and b. With these values of a and b, factorize the given expression.
If f(x) = 3x + 8; the value of f(x) + f(– x) is ______.