English

If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b. - Mathematics

Advertisements
Advertisements

Question

If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.

Sum

Solution

Since (x – 2) is a factor of polynomial 2x3 + ax2 + bx – 14, we have 

2(2)3 + a(2)2 + b(2) – 14 = 0 

`\implies` 16 + 4a + 2b – 14 = 0

`\implies` 4a + 2b = –2 

`\implies` 2a + b = –1     ...(1) 

On dividing by (x – 3), the polynomial 2x3 + ax2 + bx – 14 leaves remainder 52, 

2(3)3 + a(3)2 + b(3) – 14 = 52 

`\implies` 54 + 9a + 3b – 14 = 52

`\implies` 9a + 3b = 52 – 40 

`\implies` 9a + 3b = 12 

`\implies` 3a + b = 4    ...(2) 

Subtracting (1) and (2), we get 

2a + b = –1
3a + b = 4
 –   –     –     
–a      = –5   

Substituting a = 5 in (1), we get 

2 × 5 + b = –1 

`\implies` 10 + b = –1 

`\implies` b = –11 

Hence, a = 5 and b = –11.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Remainder and Factor Theorems - Exercise 8 (A) [Page 109]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 8 Remainder and Factor Theorems
Exercise 8 (A) | Q 16 | Page 109

Video TutorialsVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×