Advertisements
Advertisements
प्रश्न
What number should be subtracted from the polynomial f(x)= 2x3 - 5x2 +8x -17 so that the resulting polynomial is exactly divisible by (2x - 5)?
उत्तर
(2x - 5) = 0 ⇒ x = `5/2`
When we substitute this value in the polynomial, whatever we get as a remainder (say a) should be subtracted so that polynomial is exactly subtracted by the factor.
`"f" (5/2) = 2 xx (5/2) xx (5/2) xx (5/2) - 5 xx (5/2) xx (5/2) + 8 xx (5/2) - 17 - "a" = 0`
`=> 125 /4 - 125/4 + 20 - 17 - "a" = 0`
⇒ a = 3
Hence answer = 3
APPEARS IN
संबंधित प्रश्न
Find 'a' if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
The polynomials ax3 + 3x2 – 3 and 2x3 – 5x + a, when divided by x – 4, leave the same remainder in each case. Find the value of a.
When the polynomial x3 + 2x2 – 5ax – 7 is divided by (x – 1), the remainder is A and when the polynomial x3 + ax2 – 12x + 16 is divided by (x + 2), the remainder is B. Find the value of ‘a’ if 2A + B = 0.
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
Find without division, the remainder in the following:
2x3 - 3x2 + 6x - 4 is divisible by (2x-3)
Find the value of p if the division of px3 + 9x2 + 4x - 10 by (x + 3) leaves the remainder 5.
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + 2
Find the remainder (without division) on dividing f(x) by (2x + 1) where f(x) = 4x2 + 5x + 3
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = 4x3 – 12x2 + 14x – 3; g(x) = 2x – 1
If x25 + x24 is divided by (x + 1), the result is ______.