Advertisements
Advertisements
प्रश्न
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + 2
उत्तर
p(x) = 4x3 - 3x2 + 2x - 4 ...(i)
By the remainder theorem the required remainder = p(2).
Put x = -2 in equation (i), we get
p(-2) = 4(-2)3 -3(-2)2 + 2(-2)-4
= 4 x (-8) -3 x 4 -4 -4
= -32 -12 -4 -4
= -52
Hence, the remainder is -52.
APPEARS IN
संबंधित प्रश्न
Use the Remainder Theorem to factorise the following expression:]
`2x^3 + x^2 - 13x + 6`
The expression 2x3 + ax2 + bx – 2 leaves remainder 7 and 0 when divided by 2x – 3 and x + 2 respectively. Calculate the values of a and b.
The polynomials 2x3 – 7x2 + ax – 6 and x3 – 8x2 + (2a + 1)x – 16 leaves the same remainder when divided by x – 2. Find the value of ‘a’.
Using the Remainder Theorem, factorise the following completely:
4x3 + 7x2 – 36x – 63
Using the Remainder Theorem find the remainders obtained when ` x^3 + (kx + 8 ) x + k ` is divided by x + 1 and x - 2 .
Hence find k if the sum of the two remainders is 1.
Find without division, the remainder in the following :
x3 + 8x2 + 7x- 11 is divisible by (x+4)
Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where f(x) = 2x2 – 5x + 1
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = x3 – 3x2 + 4x + 50; g(x) = x – 3
If x51 + 51 is divided by x + 1, the remainder is ______.
The remainder, when x3 – x2 + x – 1 is divided by x + 1, is ______.