Advertisements
Advertisements
प्रश्न
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = x3 − x2 − x − 1, q(x) = x − 1
उत्तर
p(x) = x3 − x2 − x − 1
Divisor = q(x) = x − 1
∴ p(1) = (1)3 - (1)2 − 1 − 1
= 1 − 1 − 1 − 1
= − 2 ≠ 0
Since p(1) ≠ 0, so by factor theorem q(x) = x − 1 is not a factor of polynomial p(x) = x3 − x2 − x − 1.
APPEARS IN
संबंधित प्रश्न
If (x + 2) and (x + 3) are factors of x3 + ax + b, find the values of 'a' and `b'.
Find the value of ‘k’ if (x – 2) is a factor of x3 + 2x2 – kx + 10. Hence determine whether (x + 5) is also a factor.
Find the value of k, if 2x + 1 is a factor of (3k + 2)x3 + (k − 1)
Prove that ( p-q) is a factor of (q - r)3 + (r - p) 3
Find the value of a , if (x - a) is a factor of x3 - a2x + x + 2.
Show that (x - 1) is a factor of x3 - 7x2 + 14x - 8. Hence, completely factorise the above expression.
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 - 3x2 + 4x - 4 and g(x) = x - 2
If (2x – 3) is a factor of 6x2 + x + a, find the value of a. With this value of a, factorise the given expression.
If both (x − 2) and `(x - 1/2)` is the factors of ax2 + 5x + b, then show that a = b
If x – 3 is a factor of x2 + kx + 15; the value of k is ______.