मराठी

Show that (X - 1) is a Factor of X3 - 7x2 + 14x - 8. Hence, Completely Factorise the Above Expression. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that (x - 1) is a factor of x3 - 7x2 + 14x - 8. Hence, completely factorise the above expression.

बेरीज

उत्तर

If (x - 1) is a factor of x3 - 7x2 + 14x - 8 then on putting x - 1 = 0
x = 1
f(1) = 0
= 13 - 7(1)2 + 14(1) - 8
= 1 - 7 + 14 - 8 = 0
Hence, x - 1 is one factor.
To find other factors
= x3 - 7x2 + 14x - 8
= x2(x - 1) - 6x(x - 1) + 8(x - 1)
= (x - 1) (x2 - 6x + 8)
= (x - 1) (x2 - 4x - 2x + 8)
= (x - 1) {x(x - 4) - 2(x - 4)}
= (x - 1) (x - 2) (x - 4).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Factorization - Exercise 1

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 9 Factorization
Exercise 1 | Q 10

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×