Advertisements
Advertisements
प्रश्न
Show that (x - 1) is a factor of x3 - 7x2 + 14x - 8. Hence, completely factorise the above expression.
उत्तर
If (x - 1) is a factor of x3 - 7x2 + 14x - 8 then on putting x - 1 = 0
x = 1
f(1) = 0
= 13 - 7(1)2 + 14(1) - 8
= 1 - 7 + 14 - 8 = 0
Hence, x - 1 is one factor.
To find other factors
= x3 - 7x2 + 14x - 8
= x2(x - 1) - 6x(x - 1) + 8(x - 1)
= (x - 1) (x2 - 6x + 8)
= (x - 1) (x2 - 4x - 2x + 8)
= (x - 1) {x(x - 4) - 2(x - 4)}
= (x - 1) (x - 2) (x - 4).
APPEARS IN
संबंधित प्रश्न
Find the values of m and n so that x – 1 and x + 2 both are factors of x3 + (3m + 1)x2 + nx – 18.
Prove by factor theorem that
(x-2) is a factor of 2x3- 7x -2
Prove that (x+ 1) is a factor of x3 - 6x2 + 5x + 12 and hence factorize it completely.
Find the value of a , if (x - a) is a factor of x3 - a2x + x + 2.
Given that x + 2 and x + 3 are factors of 2x3 + ax2 + 7x - b. Determine the values of a and b.
Show that (x – 1) is a factor of x3 – 5x2 – x + 5 Hence factorise x3 – 5x2 – x + 5.
Show that (2x + 1) is a factor of 4x3 + 12x2 + 11 x + 3 .Hence factorise 4x3 + 12x2 + 11x + 3.
Show that 2x + 7 is a factor of 2x3 + 5x2 – 11x – 14. Hence factorise the given expression completely, using the factor theorem.
Use factor theorem to factorise the following polynominals completely.
x3 + 2x2 – 5x – 6
Using factor theorem, show that (x – 5) is a factor of the polynomial
2x3 – 5x2 – 28x + 15