हिंदी

Show that (x – 1) is a factor of x3 – 5x2 – x + 5 Hence factorise x3 – 5x2 – x + 5. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that (x – 1) is a factor of x3 – 5x2 – x + 5 Hence factorise x3 – 5x2 – x + 5.

योग

उत्तर

Let x – 1 = 0, then x = 1
Substituting the value of x in f(x),
f(x) = x3 – 5x2 – x + 5
= (1)3 – 5(1)2 – 1 + 5
= 1 – 5 – 1 + 5
= 0
∵ Reminder = 0
∴ x – 1 is a factor of x3 – 5x2 – x + 5
Now dividing f(x) by x – 1, we get

`x - 1")"overline(x^3 - 5x^2 - x + 5)("x^2 - 4x - 5`
           x3 – x2              
            –   +                    
                  – 4x2  – x
                  – 4x2 + 4x
                 +        –           
                           – 5x + 5
                            –5x + 5
                            +    –       
                                  x        
∴ x3 – 5x2 – x + 5
= (x – 1)(x2 – 4x – 5)
= (x – 1)[x2 – 5x + x – 5]
= (x – 1)[x(x – 5) + 1(x – 5)]
= (x – 1)(x + 1)(x – 5).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Factorization - Exercise 6.1

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×