Advertisements
Advertisements
प्रश्न
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
उत्तर
Let p(x) = 2x3 + ax2 + bx - 14
Given, (x – 2) is a factor of p(x),
⇒ Remainder = p(2) = 0
⇒ 2(2)3 + a(2)2 + b(2) – 14 = 0
⇒ 16 + 4a + 2b – 14 = 0
⇒ 4a + 2b + 2 = 0
⇒ 2a + b + 1 = 0 ...(1)
Given, when p(x) is divided by (x – 3), it leaves a remainder 52
∴ p(3) = 52
∴ 2(3)3 + a(3)2 + b(3) – 14 = 52
⇒ 54 + 9a + 3b - 14 - 52 = 0
⇒ 9a + 3b – 12 = 0
⇒ 3a + b – 4 = 0 ...(2)
Subtracting (1) from (2), we get,
a – 5 = 0 ⇒ a = 5
From (1),
10 + b + 1 = 0 ⇒ b = –11
APPEARS IN
संबंधित प्रश्न
Show that 3x + 2 is a factor of 3x2 – x – 2.
Using the Factor Theorem, show that (x – 2) is a factor of x3 – 2x2 – 9x + 18. Hence, factorise the expression x3 – 2x2 – 9x + 18 completely.
Find the value of ‘a’, if (x – a) is a factor of x3 – ax2 + x + 2.
If x – 2 is a factor of x2 + ax + b and a + b = 1, find the values of a and b.
(3x + 5) is a factor of the polynomial (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15. Find the value of ‘a’, factorise the given polynomial completely.
Find the value of m ·when x3 + 3x2 -m x +4 is exactly divisible by (x-2)
Prove that (5x - 4) is a factor of the polynomial f(x) = 5x3 - 4x2 - 5x +4. Hence factorize It completely.
The expression 2x3 + ax2 + bx - 2 leaves the remainder 7 and 0 when divided by (2x - 3) and (x + 2) respectively calculate the value of a and b. With these value of a and b factorise the expression completely.
Show that (x – 1) is a factor of x3 – 5x2 – x + 5 Hence factorise x3 – 5x2 – x + 5.
Find the value of 'a' if x – a is a factor of the polynomial 3x3 + x2 – ax – 81.