Advertisements
Advertisements
प्रश्न
By factor theorem, show that (x + 3) and (2x – 1) are factors of 2x2 + 5x – 3.
उत्तर
Let x + 3 = 0 then x = – 3
Substituting the value of x in f(x)
f(x) = 2x2 + 5x – 3
= 2(–3)2 + 5(–3) –3
f(–3) = 18 – 15 – 3 = 0
∵ Remainder = 0,
then x + 3 is a factor
Again let 2x - 1 = 0,
then x = `(1)/(2)`
Substituting the value of x in f(x),
f(x) = 2x2 + 5x – 3
`f(1/2) = 2(1/2)^2 + 5(1/2) -3`
= `2 xx (1)/(4) + (5)/(2) - 3`
= `(1)/(2) + (5)/(2) - 3` = 0
∵ Remainder = 0,
∴ 2x – 1 is also a factor
Hence, proved.
APPEARS IN
संबंधित प्रश्न
Using the Factor Theorem, show that (x + 5) is a factor of 2x3 + 5x2 – 28x – 15. Hence, factorise the expression 2x3 + 5x2 – 28x – 15 completely.
Using the factor Theorem, show that:
2x + 7 is a factor 2x3 + 5x2 − 11x – 14. Hence, factorise the given expression completely.
Find the value of m ·when x3 + 3x2 -m x +4 is exactly divisible by (x-2)
Prove that (x-3) is a factor of x3 - x2 - 9x +9 and hence factorize it completely.
If x – 2 is a factor of 2x3 - x2 - px - 2.
with the value of p, factorize the above expression completely.
Using factor theorem, show that (x - 3) is a factor of x3 - 7x2 + 15x - 9, Hence, factorise the given expression completely.
Show that 2x + 7 is a factor of 2x3 + 5x2 – 11x – 14. Hence factorise the given expression completely, using the factor theorem.
If (3x – 2) is a factor of 3x3 – kx2 + 21x – 10, find the value of k.
If ax3 + 3x2 + bx – 3 has a factor (2x + 3) and leaves remainder – 3 when divided by (x + 2), find the values of a and b. With these values of a and b, factorise the given expression.
Determine the value of m, if (x + 3) is a factor of x3 – 3x2 – mx + 24