Advertisements
Advertisements
प्रश्न
By factor theorem, show that (x + 3) and (2x – 1) are factors of 2x2 + 5x – 3.
उत्तर
Let x + 3 = 0 then x = – 3
Substituting the value of x in f(x)
f(x) = 2x2 + 5x – 3
= 2(–3)2 + 5(–3) –3
f(–3) = 18 – 15 – 3 = 0
∵ Remainder = 0,
then x + 3 is a factor
Again let 2x - 1 = 0,
then x = `(1)/(2)`
Substituting the value of x in f(x),
f(x) = 2x2 + 5x – 3
`f(1/2) = 2(1/2)^2 + 5(1/2) -3`
= `2 xx (1)/(4) + (5)/(2) - 3`
= `(1)/(2) + (5)/(2) - 3` = 0
∵ Remainder = 0,
∴ 2x – 1 is also a factor
Hence, proved.
APPEARS IN
संबंधित प्रश्न
Show that 3x + 2 is a factor of 3x2 – x – 2.
If 2x + 1 is a factor of 2x2 + ax – 3, find the value of a.
Using the Factor Theorem, show that (x – 2) is a factor of x3 – 2x2 – 9x + 18. Hence, factorise the expression x3 – 2x2 – 9x + 18 completely.
(3x + 5) is a factor of the polynomial (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15. Find the value of ‘a’, factorise the given polynomial completely.
If (x - 2) is a factor of x3 − mx2 + 10x − 20 then find the value of m.
Show that (x – 2) is a factor of 3x2 – x – 10 Hence factorise 3x2 – x – 10.
Show that 2x + 7 is a factor of 2x3 + 5x2 – 11x – 14. Hence factorise the given expression completely, using the factor theorem.
Using the Remainder and Factor Theorem, factorise the following polynomial: x3 + 10x2 – 37x + 26.
If (x + 2) and (x – 3) are factors of x3 + ax + b, find the values of a and b. With these values of a and b, factorise the given expression.
If p(a) = 0 then (x – a) is a ___________ of p(x)