Advertisements
Advertisements
प्रश्न
Prove that (x - y) is a factor of yz( y2 - z2) + zx( z2 - x2) + xy ( x2 - y2)
उत्तर
If x - y is assumed to be fsctor, then x = y. Substituting this in problerr polynomial, we get :
f(x = y) = yz (y2 - z2) + zy(z2 - y2) + yy (y2 - y2)
= yz (y2-z2) + zy(-(y2 - z2)) + 0
= yz (y2 - z2) - yz (y2 - z2) = 0
Hence , (x - y) is a factor.
APPEARS IN
संबंधित प्रश्न
Show that x – 2 is a factor of 5x2 + 15x – 50.
(3x + 5) is a factor of the polynomial (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15. Find the value of ‘a’, factorise the given polynomial completely.
Use factor theorem to determine whether x + 3 is factor of x 2 + 2x − 3 or not.
Prove by factor theorem that
(3x-2) is a factor of 18x3 - 3x2 + 6x -12
If (2x + 1) is a factor of 6x3 + 5x2 + ax – 2 find the value of a.
If (3x – 2) is a factor of 3x3 – kx2 + 21x – 10, find the value of k.
What number should be subtracted from 2x3 – 5x2 + 5x so that the resulting polynomial has 2x – 3 as a factor?
If (x + 2) and (x – 3) are factors of x3 + ax + b, find the values of a and b. With these values of a and b, factorise the given expression.
If ax3 + 3x2 + bx – 3 has a factor (2x + 3) and leaves remainder – 3 when divided by (x + 2), find the values of a and b. With these values of a and b, factorise the given expression.
Factors of 3x3 – 2x2 – 8x are ______.