Advertisements
Advertisements
प्रश्न
Show that x – 2 is a factor of 5x2 + 15x – 50.
उत्तर
(x – a) is a factor of a polynomial f(x) if the remainder, when f(x) is divided by (x – a), is 0, i.e., if f(a) = 0.
f(x) = 5x2 + 15x – 50
f(2) = 5(2)2 + 15(2) – 50
= 20 + 30 – 50
= 0
Hence, x – 2 is a factor of 5x2 + 15x – 50
APPEARS IN
संबंधित प्रश्न
Prove by factor theorem that
(2x+1) is a factor of 4x3 + 12x2 + 7x +1
Prove by factor theorem that
(2x - 1) is a factor of 6x3 - x2 - 5x +2
Prove that (x+ 1) is a factor of x3 - 6x2 + 5x + 12 and hence factorize it completely.
Find the value of a , if (x - a) is a factor of x3 - a2x + x + 2.
Show that (x – 1) is a factor of x3 – 5x2 – x + 5 Hence factorise x3 – 5x2 – x + 5.
Use factor theorem to factorise the following polynominals completely.
x3 + 2x2 – 5x – 6
If ax3 + 3x2 + bx – 3 has a factor (2x + 3) and leaves remainder – 3 when divided by (x + 2), find the values of a and b. With these values of a and b, factorise the given expression.
If two polynomials 2x3 + ax2 + 4x – 12 and x3 + x2 – 2x + a leave the same remainder when divided by (x – 3), find the value of a and also find the remainder.
If x – 3 is a factor of x2 + kx + 15; the value of k is ______.
If mx2 – nx + 8 has x – 2 as a factor, then ______.