Advertisements
Advertisements
प्रश्न
Find the remainder when x4 + 1 is divided by x + 1.
उत्तर
By remainder theorem we know that when a polynomial f(x) is divided by x – a, then the remainder is f(a).
f(x) = x4 + 1
Remainder = f(–1)
= (–1)4 + 1
= 1 + 1
= 2
APPEARS IN
संबंधित प्रश्न
Check whether 7 + 3x is a factor of 3x3 + 7x.
Use Remainder theorem to factorize the following polynomial:
`2x^3 + 3x^2 - 9x - 10`
Use the Remainder Theorem to factorise the following expression:]
`2x^3 + x^2 - 13x + 6`
When x3 + 2x2 – kx + 4 is divided by x – 2, the remainder is k. Find the value of constant k.
What number should be subtracted from x3 + 3x2 – 8x + 14 so that on dividing it by x – 2, the remainder is 10?
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 − 19x + 6
Using the Remainder Theorem find the remainders obtained when ` x^3 + (kx + 8 ) x + k ` is divided by x + 1 and x - 2 .
Hence find k if the sum of the two remainders is 1.
If the polynomial y3 − 5y2 + 7y + m is divided by y + 2 and the remainder is 50 then find the value of m.
Find the remainder (without division) on dividing f(x) by (2x + 1) where f(x) = 4x2 + 5x + 3