Advertisements
Advertisements
प्रश्न
When x3 + 2x2 – kx + 4 is divided by x – 2, the remainder is k. Find the value of constant k.
उत्तर
Let f(x) = x3 + 2x2 – kx + 4
x – 2 = 0 `\implies` x = 2
On dividing f(x) by x – 2, it leaves a remainder k.
∴ f(2) = k
(2)3 + 2(2)2 – k(2) + 4 = k
8 + 8 – 2k + 4 = k
20 = 3k
`k = 20/3 = 6(2)/3`
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by 5 + 2x.
Find the value of a, if the division of ax3 + 9x2 + 4x – 10 by x + 3 leaves a remainder 5.
The polynomials 2x3 – 7x2 + ax – 6 and x3 – 8x2 + (2a + 1)x – 16 leaves the same remainder when divided by x – 2. Find the value of ‘a’.
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(54m3 + 18m2 − 27m + 5) ; (m − 3)
Find without division, the remainder in the following:
5x3 - 7x2 +3 is divided by (x-1)
What number must be added to 2x3 – 7x2 + 2x so that the resulting polynomial leaves the remainder – 2 when divided by 2x – 3?
By remainder theorem, find the remainder when, p(x) is divided by g(x) where, p(x) = 4x3 – 12x2 + 14x – 3; g(x) = 2x – 1
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2