Advertisements
Advertisements
प्रश्न
Show that (x – 1) is a factor of x3 – 5x2 – x + 5 Hence factorise x3 – 5x2 – x + 5.
उत्तर
Let x – 1 = 0, then x = 1
Substituting the value of x in f(x),
f(x) = x3 – 5x2 – x + 5
= (1)3 – 5(1)2 – 1 + 5
= 1 – 5 – 1 + 5
= 0
∵ Reminder = 0
∴ x – 1 is a factor of x3 – 5x2 – x + 5
Now dividing f(x) by x – 1, we get
`x - 1")"overline(x^3 - 5x^2 - x + 5)("x^2 - 4x - 5`
x3 – x2
– +
– 4x2 – x
– 4x2 + 4x
+ –
– 5x + 5
–5x + 5
+ –
x
∴ x3 – 5x2 – x + 5
= (x – 1)(x2 – 4x – 5)
= (x – 1)[x2 – 5x + x – 5]
= (x – 1)[x(x – 5) + 1(x – 5)]
= (x – 1)(x + 1)(x – 5).
APPEARS IN
संबंधित प्रश्न
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
Show that x – 2 is a factor of 5x2 + 15x – 50.
If x + a is a common factor of expressions f(x) = x2 + px + q and g(x) = x2 + mx + n; show that : `a = (n - q)/(m - p)`
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = x3 − x2 − x − 1, q(x) = x − 1
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = 2x3 − x2 − 45, q(x) = x − 3
Show that (x - 1) is a factor of x3 - 7x2 + 14x - 8. Hence, completely factorise the above expression.
By factor theorem, show that (x + 3) and (2x – 1) are factors of 2x2 + 5x – 3.
Use factor theorem to factorise the following polynominals completely.
x3 + 2x2 – 5x – 6
Use factor theorem to factorise the following polynominals completely. x3 – 13x – 12.
Factors of 3x3 – 2x2 – 8x are ______.