Advertisements
Advertisements
प्रश्न
If (x - 2) is a factor of the expression 2x3 + ax2 + bx - 14 and when the expression is divided by (x - 3), it leaves a remainder 52, find the values of a and b.
उत्तर
Let f(x) = 2x3 + ax2 + bx - 14 ...(1)
as (x - 2) is factor of (1)
Put x - 2 = 0
⇒ x = 2 in (1)
f(2) = 2(2)3 + a(2)2 + b(2) - 14
0 = 16 + 4a + 2b - 14
or
4a + 2b = -2
or 2a + b = -1 ...(2)
Again when f(x) is divided by (x - 3), it leaves remainder 52
Put x - 3 = 0
⇒ x = 3
f(3) = 2(3)3 + a(3)2 + b(3) - 14
52 = 54 + 9a + 3b - 14
52 = 9a + 3b + 40
52 - 40 = 9a + 3b
⇒ 12 = 9a + 3b
or
4 = 3a + b ...(3)
Solving (2) and (3)
3a + b = 4
2a + b = -1
Sub - - +
a = 5
Substitute a = 5 in 3a + b = 4
⇒ 3 x 5 + b = 4
15 + b = 4
⇒ b = 4 - 15
b = -11.
APPEARS IN
संबंधित प्रश्न
If (x + 2) and (x + 3) are factors of x3 + ax + b, find the values of 'a' and `b'.
Find the values of m and n so that x – 1 and x + 2 both are factors of x3 + (3m + 1)x2 + nx – 18.
If x + a is a common factor of expressions f(x) = x2 + px + q and g(x) = x2 + mx + n; show that : `a = (n - q)/(m - p)`
Prove that (x+ 1) is a factor of x3 - 6x2 + 5x + 12 and hence factorize it completely.
Given that x + 2 and x + 3 are factors of 2x3 + ax2 + 7x - b. Determine the values of a and b.
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 - 3x2 + 4x - 4 and g(x) = x - 2
For what value of k is the polynomial p(x) = 2x3 – kx2 + 3x + 10 exactly divisible by (x – 2)
Using factor theorem, show that (x – 5) is a factor of the polynomial
2x3 – 5x2 – 28x + 15
Determine the value of m, if (x + 3) is a factor of x3 – 3x2 – mx + 24
If x – 3 is a factor of x2 + kx + 15; the value of k is ______.