मराठी

Find the Values of M and N When the Polynomial F(X)= X3 - 2x2 + M X +N Has a Factor (X+2) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of m and n when the polynomial f(x)= x3 - 2x2 + m x +n has a factor (x+2) and leaves a remainder 9 when divided by (x+1).

बेरीज

उत्तर

(x+2) ⇒  x =- 2 .... (i) 

(x+l) ⇒  x = -1 .... (ii) 

Putting (i) in polynomial, we get 

f(-2) = (-2) × (-2)× (-2) - 2 × (-2) × (-2) + m × (-2) + n = 0 

⇒ -8 -8 - 2m + n= 0 

⇒  n =2 m + 16 .... (iii) 

Putting (ii) in polynomial, and remainder is 9 we get 

f(-1) = (-1) × (-1) × (-1) - 2 × (-1) × (-1) + m × (-1) + n = 9 

⇒ - 1 - 2 - m + n = 9

⇒ m = n - 12    .....(iv)

Combining (iii) and (iv), we get, 

n = 2 x (n - 12) + 16 ,

⇒ n = 8

Hence, m = n - 12 = 8 - 12 = -4 

m = - 4, n = 8 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Remainder And Factor Theorems - Exercise 10.1

APPEARS IN

फ्रँक Mathematics - Part 2 [English] Class 10 ICSE
पाठ 10 Remainder And Factor Theorems
Exercise 10.1 | Q 8

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×