Advertisements
Advertisements
प्रश्न
Find the values of m and n when the polynomial f(x)= x3 - 2x2 + m x +n has a factor (x+2) and leaves a remainder 9 when divided by (x+1).
उत्तर
(x+2) ⇒ x =- 2 .... (i)
(x+l) ⇒ x = -1 .... (ii)
Putting (i) in polynomial, we get
f(-2) = (-2) × (-2)× (-2) - 2 × (-2) × (-2) + m × (-2) + n = 0
⇒ -8 -8 - 2m + n= 0
⇒ n =2 m + 16 .... (iii)
Putting (ii) in polynomial, and remainder is 9 we get
f(-1) = (-1) × (-1) × (-1) - 2 × (-1) × (-1) + m × (-1) + n = 9
⇒ - 1 - 2 - m + n = 9
⇒ m = n - 12 .....(iv)
Combining (iii) and (iv), we get,
n = 2 x (n - 12) + 16 ,
⇒ n = 8
Hence, m = n - 12 = 8 - 12 = -4
m = - 4, n = 8
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x+1.
Using the Remainder Theorem, factorise the following completely:
4x3 + 7x2 – 36x – 63
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(54m3 + 18m2 − 27m + 5) ; (m − 3)
Using remainder theorem, find the value of m if the polynomial f(x)= x3 + 5x2 -mx +6 leaves a remainder 2m when divided by (x-1),
Find the value of p if the division of px3 + 9x2 + 4x - 10 by (x + 3) leaves the remainder 5.
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + 2
If on dividing 2x3 + 6x2 – (2k – 7)x + 5 by x + 3, the remainder is k – 1 then the value of k is
Check whether p(x) is a multiple of g(x) or not:
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
Check whether p(x) is a multiple of g(x) or not:
p(x) = 2x3 – 11x2 – 4x + 5, g(x) = 2x + 1
A polynomial in ‘x’ is divided by (x – a) and for (x – a) to be a factor of this polynomial, the remainder should be ______.