Advertisements
Advertisements
प्रश्न
Prove that (5x - 4) is a factor of the polynomial f(x) = 5x3 - 4x2 - 5x +4. Hence factorize It completely.
उत्तर
If 5x - 4 is assumed to be factor, then x = `4/5` . Substituting this in problem polynomial, we get:
`"f"(4/5) = 5 xx (4/5) xx (4/5) xx (4/5) - 4 xx (4/5) xx (4/5) - 5 xx (4/5) + 4`
`= 64/25 - 64/25 - 4 + 4`
= 0
Hence (5x - 4) is a factor of the polynomial.
Multiplying (5x-4) by x2, we get 5x3 - 4x2, hence we are left with -5x + 4 (and 1st part of factor as x2).
Multiplying (5x - 4) by -1, we get -5x + 4, hence we are left with 0 (and 2nd part of factor as -7x).
Hence complete factor is (5x - 4) (x2-1).
Further factorizing (x2 - 1), we get :
⇒ (x - 1)(x + 1) = 0
Hence answer is (5x - 4)(x - 1)(x + 1) = 0
APPEARS IN
संबंधित प्रश्न
Find the value of k, if 2x + 1 is a factor of (3k + 2)x3 + (k − 1)
Prove by factor theorem that
(3x-2) is a factor of 18x3 - 3x2 + 6x -12
Show that (x – 3) is a factor of x3 – 7x2 + 15x – 9. Hence factorise x3 – 7x2 + 15 x – 9
Find the value of the constants a and b, if (x – 2) and (x + 3) are both factors of the expression x3 + ax2 + bx – 12.
If ax3 + 3x2 + bx – 3 has a factor (2x + 3) and leaves remainder – 3 when divided by (x + 2), find the values of a and b. With these values of a and b, factorise the given expression.
If two polynomials 2x3 + ax2 + 4x – 12 and x3 + x2 – 2x + a leave the same remainder when divided by (x – 3), find the value of a and also find the remainder.
Find the value of 'a' if x – a is a factor of the polynomial 3x3 + x2 – ax – 81.
x – 1 is a factor of 8x2 – 7x + m; the value of m is ______.
Factors of 3x3 – 2x2 – 8x are ______.
If mx2 – nx + 8 has x – 2 as a factor, then ______.