Advertisements
Advertisements
प्रश्न
Find the value of 'a' if x – a is a factor of the polynomial 3x3 + x2 – ax – 81.
उत्तर
Let polynomial
P(x) = 3x3 + x2 – ax – 81
x – a is a factor of P(x)
Then putting x – a = 0
i.e. x = a in P(x) we get
P(a) = 0
3a3 + a2 – a × a – 81 = 0
3a3 = 81
a3 = 27
`\implies` a = (27)1/3 = 3
APPEARS IN
संबंधित प्रश्न
Using the Factor Theorem, show that (3x + 2) is a factor of 3x3 + 2x2 – 3x – 2. Hence, factorise the expression 3x3 + 2x2 – 3x – 2 completely.
(3x + 5) is a factor of the polynomial (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15. Find the value of ‘a’, factorise the given polynomial completely.
Show that m − 1 is a factor of m21 − 1 and m22 − 1.
Prove by factor theorem that
(2x - 1) is a factor of 6x3 - x2 - 5x +2
Find the value of m ·when x3 + 3x2 -m x +4 is exactly divisible by (x-2)
Prove that (x+ 1) is a factor of x3 - 6x2 + 5x + 12 and hence factorize it completely.
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 - 3x2 + 4x - 4 and g(x) = x - 2
If x – 2 is a factor of 2x3 - x2 - px - 2.
Find the value of p
Find the value of the constants a and b, if (x – 2) and (x + 3) are both factors of the expression x3 + ax2 + bx – 12.
Determine whether (x – 1) is a factor of the following polynomials:
x4 + 5x2 – 5x + 1