मराठी

The Expression 2x3 + Ax2 + Bx - 2 Leaves the Remainder 7 and 0 When Divided by (2x - 3) and (X + 2) Respectively Calculate the Value of a and B. with These Value of a and B Factorise the Expression - Mathematics

Advertisements
Advertisements

प्रश्न

The expression 2x3 + ax2 + bx - 2 leaves the remainder 7 and 0 when divided by (2x - 3) and (x + 2) respectively calculate the value of a and b. With these value of a and b factorise the expression completely.

बेरीज

उत्तर

Let P(x) = 2x3 + ax2 + bx - 2
when P(x) is divided by 2x - 3
`"P"(3/2) = 2(3/2)^3 + a(3/2)^2 + b(3/2)-2` = 7
= `(27)/(4) + (9)/(4)a + (3)/(2)b -2` = 7
= `(27 + 9a + 6b - 8)/(4)` = 7
= 9a + 6b = 28 + 8 - 27
= 9a + 6b = 9
⇒ 3a + 2b = 3                            ...(1)
Similarly when P(x) is divided by x + 2
x = -2
2(-2)3 + a(-2)2 + b(-2) -2 = 0
-16 + 4a - 2b - 2 = 0
⇒ 4a - 2b = 18                           ...(2)
On Solving equation (1) and (2)
3a + 2b = 3
4a - 2b = 18
       7a = 21
         a = 3
On substituting value of a in equation (1)
3 x 3 + 2b = 3
2b = 3 - 9
b = `(-6)/(2)`
= -3
b = -3
a = 3, b = -3
On substituting value of a and b
2x3 + 3a2 - 3x - 2
When x + 2 is a factor___
x + 2) 2x3 + 3x2 - 3x - 2 (2x2 - x - 1
         2x3 + 4x2
          -        -________
               - x2 - 3x
               - x2 - 2x
                +     +
                  -x -2
                  -x - 2
                 +     +
                     x
2x2 - x - 1
= 2x2 - 2x + x - 1
= 2x(x - 1) + 1(x - 1)
(x - 1) (2x + 1)
Hence required factors are
(x - 1) (x + 2) (2x + 1). 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Factorization - Exercise 1

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 9 Factorization
Exercise 1 | Q 18

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×