Advertisements
Advertisements
Question
The expression 2x3 + ax2 + bx - 2 leaves the remainder 7 and 0 when divided by (2x - 3) and (x + 2) respectively calculate the value of a and b. With these value of a and b factorise the expression completely.
Solution
Let P(x) = 2x3 + ax2 + bx - 2
when P(x) is divided by 2x - 3
`"P"(3/2) = 2(3/2)^3 + a(3/2)^2 + b(3/2)-2` = 7
= `(27)/(4) + (9)/(4)a + (3)/(2)b -2` = 7
= `(27 + 9a + 6b - 8)/(4)` = 7
= 9a + 6b = 28 + 8 - 27
= 9a + 6b = 9
⇒ 3a + 2b = 3 ...(1)
Similarly when P(x) is divided by x + 2
x = -2
2(-2)3 + a(-2)2 + b(-2) -2 = 0
-16 + 4a - 2b - 2 = 0
⇒ 4a - 2b = 18 ...(2)
On Solving equation (1) and (2)
3a + 2b = 3
4a - 2b = 18
7a = 21
a = 3
On substituting value of a in equation (1)
3 x 3 + 2b = 3
2b = 3 - 9
b = `(-6)/(2)`
= -3
b = -3
a = 3, b = -3
On substituting value of a and b
2x3 + 3a2 - 3x - 2
When x + 2 is a factor___
x + 2) 2x3 + 3x2 - 3x - 2 (2x2 - x - 1
2x3 + 4x2
- -________
- x2 - 3x
- x2 - 2x
+ +
-x -2
-x - 2
+ +
x
2x2 - x - 1
= 2x2 - 2x + x - 1
= 2x(x - 1) + 1(x - 1)
(x - 1) (2x + 1)
Hence required factors are
(x - 1) (x + 2) (2x + 1).
APPEARS IN
RELATED QUESTIONS
If (x + 2) and (x + 3) are factors of x3 + ax + b, find the values of 'a' and `b'.
Find the value of ‘a’, if (x – a) is a factor of x3 – ax2 + x + 2.
Show that m − 1 is a factor of m21 − 1 and m22 − 1.
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 + x2 + 3x + 175 and g(x) = x + 5.
Show that (x – 1) is a factor of x3 – 5x2 – x + 5 Hence factorise x3 – 5x2 – x + 5.
Show that 2x + 7 is a factor of 2x3 + 5x2 – 11x – 14. Hence factorise the given expression completely, using the factor theorem.
Find the value of ‘K’ for which x = 3 is a solution of the quadratic equation, (K + 2)x2 – Kx + 6 = 0. Also, find the other root of the equation.
Using factor theorem, show that (x – 5) is a factor of the polynomial
2x3 – 5x2 – 28x + 15
Determine the value of m, if (x + 3) is a factor of x3 – 3x2 – mx + 24
If x – 3 is a factor of p(x), then the remainder is