हिंदी

If a and B Are Square Matrices Such that B = − A−1 Ba, Then (A + B)2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If A and B are square matrices such that B = − A−1 BA, then (A + B)2 = ________ .

विकल्प

  • O

  • A2 + B2

  • A2 + 2AB + B2

  • A + B

MCQ

उत्तर

\[A^2 + B^2\]

\[B = - A^{- 1} BA\]
\[ \Rightarrow AB = - A A^{- 1} BA\]
\[ \Rightarrow AB = - BA . . . \left( 1 \right)\]
\[ \left( \because A A^{- 1} = I \right)\]
Now, 
\[ \left( A + B \right)^2 = \left( A + B \right)\left( A + B \right)\]
\[ \Rightarrow \left( A + B \right)^2 = A^2 + AB + BA + B^2 \]
\[ \Rightarrow \left( A + B \right)^2 = A^2 - BA + BA + B^2 \left[\text{ Using }\left( 1 \right) \right]\]
\[ \Rightarrow \left( A + B \right)^2 = A^2 + B^2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Adjoint and Inverse of a Matrix - Exercise 7.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 7 Adjoint and Inverse of a Matrix
Exercise 7.4 | Q 14 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find λ and μ if

`(hati+3hatj+9k)xx(3hati-lambdahatj+muk)=0`


If A and B are square matrices of the same order such that |A| = 3 and AB = I, then write the value of |B|.


If A is a square matrix of order 3 with determinant 4, then write the value of |−A|.


If A is a square matrix such that |A| = 2, write the value of |A AT|.


If A is a square matrix of order n × n such that  \[|A| = \lambda\] , then write the value of |−A|.


If A and B are square matrices of order 3 such that |A| = − 1, |B| = 3, then find the value of |3 AB|.


If A and B are square matrices of order 2, then det (A + B) = 0 is possible only when





If A is a square matrix such that A (adj A)  5I, where I denotes the identity matrix of the same order. Then, find the value of |A|.


If A is a square matrix of order 3 such that |A| = 5, write the value of |adj A|.


If A is a square matrix of order 3 such that |adj A| = 64, find |A|.


If A is a non-singular square matrix such that |A| = 10, find |A−1|.


If A is a non-singular square matrix such that \[A^{- 1} = \begin{bmatrix}5 & 3 \\ - 2 & - 1\end{bmatrix}\] , then find \[\left( A^T \right)^{- 1} .\]


If A is a square matrix of order 3 such that |A| = 2, then write the value of adj (adj A).


If A is a square matrix of order 3 such that |A| = 3, then write the value of adj (adj A). 


Let A be a 3 × 3 square matrix, such that A (adj A) = 2 I, where I is the identity matrix. Write the value of |adj A|.


If A is a square matrix such that \[A \left( adj A \right) = \begin{bmatrix}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{bmatrix}\] , then write the value of |adj A|.

 

Let A be a square matrix such that \[A^2 - A + I = O\], then write \[A^{- 1}\]  interms of A.


If \[A = \begin{bmatrix}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{bmatrix},\text{ then }A^5 =\] ____________ .


If A is a square matrix such that A2 = I, then A1 is equal to _______ .


If \[A = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\text{ and }B = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}\] are two square matrices, find AB and hence solve the system of linear equations: x − y = 3, 2x + 3y + 4z = 17, y + 2z = 7

A is a square matrix with ∣A∣ = 4. then find the value of ∣A. (adj A)∣.


Let A = `[(1, "a" ("b + c"), "bc"),(1, "b" ("c + a"), "ca"),(1, "c" ("a + b"), "ab")],` then Det. A is ____________.


If A and B are square matrices of order 3, then ____________.


Given that A is a square matrix of order 3 and |A| = −4, then |adj A| is equal to:


Given that A = [aij] is a square matrix of order 3 × 3 and |A| = −7, then the value of `sum_("i" = 1)^3 "a"_("i"2)"A"_("i"2)`, where Aij denotes the cofactor of element aij is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×