Advertisements
Advertisements
प्रश्न
If `[by + cz ]/[b^2 + c^2] = [cz + ax]/[c^2 + a^2] = [ax + by]/[a^2 + b^2]` then prove that `x/a= y/b = z/c`
उत्तर
`[by + cz]/[b^2 + c^2] = [cz + ax]/[c^2 + a^2] = [ax + by]/[a^2 + b^2]`
By theorem of equal ratios,
⇒ `[ by + cz ]/[ b^2 + c^2] = [ cz + ax ]/[ c^2 + a^2] = [ ax + by ]/[ a^2 + b^2 ] = [(by + cz) +(cz + ax) + (ax + by)]/[( b^2 + c^2) + ( c^2 + a^2) + (a^2 + b^2 )] `
⇒ `[ 2ax + 2by + 2cz ]/[ 2a^2 + 2b^2 + 2c^2] `
⇒ `[ 2(ax + by + cz) ]/[ 2(a^2 + b^2 + c^2)]`
⇒ `[(ax + by + cz) ]/[(a^2 + b^2 + c^2)] `
Again applying theorem of equal ratios, we get
⇒ `[( by + cz )- (ax + by + cz)]/[(b^2 + c^2) - (a^2 + b^2 + c^2)] = [(cz + ax) - (ax + by + cz)]/[(c^2 + a^2) - (a^2 + b^2 + c^2)] = [(ax + by) - (ax + by + cz)] /[(a^2 + b^2) - (a^2 + b^2 + c^2)]`
⇒ `(-ax)/(-a^2) = (-by)/(-b^2) = (-cz)/(-c^2)`
⇒ `x/a = y/b = z/c`
APPEARS IN
संबंधित प्रश्न
Fill in the blanks of the following.
`x/7 = y/3 = (3x + 5y)/("_____") = (7x -9y)/("_____")`
Fill in the blanks of the following.
`a/3 = b/4 = c/7 = (a-2b+3c)/("______") = ("______")/ (6 - 8 +14)`
If a(y + z) = b(z + x) = c(x + y) and out of a, b, c no two of them are equal then show that,
`(y - z)/[a ( b - c )] = ( z - x)/[ b ( c - a)] = ( x - y)/[c ( a - b )]`
If `[ax + by]/( x + y) = ( bx + az )/(x + z) = (ay + bz)/[y + z]` and `x + y + z ≠ 0 ` then show that `[a + b]/2`.
If `(y + z)/a = (z + x )/b = (x + y)/c` then show that `x/[b + c - a ] = y/[c + a - b] = z/(a + b - c)`
If `{ 3x - 5y }/ ( 5z + 3y ) = ( x + 5z )/( y - 5x ) = ( y - z )/ ( x - z )`then show that every ratio = `x/y`.
Solve.
`[ 16x^2 - 20x +9]/[ 8x^2 + 12x + 21] = ( 4x - 5 )/( 2x + 3)`
Solve.
`( 5y^2 + 40y - 12)/( 5y + 10y^2 - 4) = ( y + 8)/( 1 + 2y)`
Solve:
`[12x^2 + 18x + 42]/[ 18 x^2 + 12x +58 ] = [ 2x + 3]/[ 3x + 2]`
If `[ 2x - 3y ]/[ 3z + y] = [ z - y ]/[ z - x ] = [ x + 3z ]/[ 2y - 3x]` then prove that every ratio = `x/y`.