Advertisements
Advertisements
प्रश्न
Solve:
`[12x^2 + 18x + 42]/[ 18 x^2 + 12x +58 ] = [ 2x + 3]/[ 3x + 2]`
उत्तर
`[12x^2 + 18x + 42]/[ 18 x^2 + 12x +58 ] = [ 2x + 3]/[ 3x + 2]`
If x = 0, then `[12 xx 0 + 18 xx 0 + 42]/[ 18 xx 0 + 12 xx 0 +58 ] = [ 2 xx 0+ 3]/[ 3 xx 0 + 2] ⇒ 42/58 = 3/2`, which is not true.
So, x = 0 is not a solution of the given equation.
Now,
`[12x^2 + 18x + 42]/[ 18 x^2 + 12x +58 ] = [ 2x + 3]/[ 3x + 2] = [6x ( 2x + 3)]/[6x( 3x + 2)]` ....(by Theorem of equal ratios)
⇒ `[12x^2 + 18x + 42]/[ 18 x^2 + 12x +58 ] = [ 2x + 3]/[ 3x + 2] = [(12x^2 + 18x + 42) - 6x ( 2x + 3)]/[(18 x^2 + 12x +58) - 6x( 3x + 2)]`
⇒ `[12x^2 + 18x + 42]/[ 18 x^2 + 12x +58 ] = [ 2x + 3]/[ 3x + 2] = (12x^2 + 18x + 42 - 12x^2 + 18x )/(18 x^2 + 12x +58 - 18x^2 - 12x )`
⇒ `[12x^2 + 18x + 42]/[ 18 x^2 + 12x +58 ] = [ 2x + 3]/[ 3x + 2] = 42/58`
`therefore [ 2x + 3]/[ 3x + 2] = 42/58`
⇒ `[ 2x + 3]/[ 3x + 2] = 21/29`
⇒ `58x +87 = 63x + 42`
⇒ `63x - 58x = 87 - 42`
⇒ `5x = 45`
⇒ `x = 9`
Thus, the solution of the given equation is x = 9.
APPEARS IN
संबंधित प्रश्न
Fill in the blanks of the following.
`x/7 = y/3 = (3x + 5y)/("_____") = (7x -9y)/("_____")`
Fill in the blanks of the following.
`a/3 = b/4 = c/7 = (a-2b+3c)/("______") = ("______")/ (6 - 8 +14)`
If a(y + z) = b(z + x) = c(x + y) and out of a, b, c no two of them are equal then show that,
`(y - z)/[a ( b - c )] = ( z - x)/[ b ( c - a)] = ( x - y)/[c ( a - b )]`
If `x/[3x - y -z] = y/[3y - z -x] = z/[3z -x -y]` and x + y + z ≠ 0 then show that the value of each ratio is equal to 1.
If `[ax + by]/( x + y) = ( bx + az )/(x + z) = (ay + bz)/[y + z]` and `x + y + z ≠ 0 ` then show that `[a + b]/2`.
If `(y + z)/a = (z + x )/b = (x + y)/c` then show that `x/[b + c - a ] = y/[c + a - b] = z/(a + b - c)`
Solve.
`[ 16x^2 - 20x +9]/[ 8x^2 + 12x + 21] = ( 4x - 5 )/( 2x + 3)`
Solve.
`( 5y^2 + 40y - 12)/( 5y + 10y^2 - 4) = ( y + 8)/( 1 + 2y)`
If `[ 2x - 3y ]/[ 3z + y] = [ z - y ]/[ z - x ] = [ x + 3z ]/[ 2y - 3x]` then prove that every ratio = `x/y`.
If `[by + cz ]/[b^2 + c^2] = [cz + ax]/[c^2 + a^2] = [ax + by]/[a^2 + b^2]` then prove that `x/a= y/b = z/c`