हिंदी

If e(cos2x+cos4x+cos6x+...∞)loge2 satisfies the equation t2 – 9t + 8 = 0, then the value of π2sinxsinx+3cosx(0<x,<π2) is ______. -

Advertisements
Advertisements

प्रश्न

If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.

विकल्प

  • `3/2`

  • `2sqrt(3)`

  • `1/2`

  • `sqrt(3)`

MCQ
रिक्त स्थान भरें

उत्तर

If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is `underlinebb(1/2)`. 

Explanation:

Given: `e^((cos^2x + cos^4x + cos^6x + .......)log_e2` satisfies the equation t2 – 9t + 8 = 0.

Sum of G.P. with first term = a, common ratio = r for infinite terms = `a/(1 - r)`.

In case of cos2x + cos4x + cos6x.....

a = cos2x, r = `(cos^4x)/(cos^2x)` = cos2x

cos2x + cos4x + cos6x..... = `(cos^2x)/(1 - cos^2x)`

= `(cos^2x)/(sin^2x)`

= cot2x

`e^((cos^2x + cos^4x + .......)log_e2` = `e^(cot^2x.log_e2)`

= `e^(log_e2^(cos^2x)`  ...(∵ mlogx = logxm)

= `2^(cot^2x)`  ...`(∵ a^(loga^x) = x)`

`2^(cot^2x)` satisfies t2 – 9t + 8 = 0

⇒ t2 – t – 8t + 8 = 0 

⇒ t(t – 1) – 8(t – 1) = 0

⇒ t = 1 or 8

⇒ Either, `2^(cot^2x)` = 1 or `2^(cot^2x)` = 8 

⇒ `2^(cot^2x)`  = 20 or `2^(cot^2x)` = 23 

⇒ cot2x = 0 or cot2x = 3

∵ `0 < x < π/2`

∴ cotx = `sqrt(3)` ⇒ x = `π/6`

 Now, `(2sinx)/(sinx + sqrt(3)cosx)` = `2/(1 + sqrt(3) xx cot  π/6` = `1/2`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×