Advertisements
Advertisements
प्रश्न
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
पर्याय
`3/2`
`2sqrt(3)`
`1/2`
`sqrt(3)`
उत्तर
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is `underlinebb(1/2)`.
Explanation:
Given: `e^((cos^2x + cos^4x + cos^6x + .......)log_e2` satisfies the equation t2 – 9t + 8 = 0.
Sum of G.P. with first term = a, common ratio = r for infinite terms = `a/(1 - r)`.
In case of cos2x + cos4x + cos6x.....
a = cos2x, r = `(cos^4x)/(cos^2x)` = cos2x
cos2x + cos4x + cos6x..... = `(cos^2x)/(1 - cos^2x)`
= `(cos^2x)/(sin^2x)`
= cot2x
`e^((cos^2x + cos^4x + .......)log_e2` = `e^(cot^2x.log_e2)`
= `e^(log_e2^(cos^2x)` ...(∵ mlogx = logxm)
= `2^(cot^2x)` ...`(∵ a^(loga^x) = x)`
`2^(cot^2x)` satisfies t2 – 9t + 8 = 0
⇒ t2 – t – 8t + 8 = 0
⇒ t(t – 1) – 8(t – 1) = 0
⇒ t = 1 or 8
⇒ Either, `2^(cot^2x)` = 1 or `2^(cot^2x)` = 8
⇒ `2^(cot^2x)` = 20 or `2^(cot^2x)` = 23
⇒ cot2x = 0 or cot2x = 3
∵ `0 < x < π/2`
∴ cotx = `sqrt(3)` ⇒ x = `π/6`
Now, `(2sinx)/(sinx + sqrt(3)cosx)` = `2/(1 + sqrt(3) xx cot π/6` = `1/2`.