हिंदी

If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then limx→2-f(x) is equal to ______ -

Advertisements
Advertisements

प्रश्न

If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______ 

विकल्प

  • 2

  • -1

  • 0

  • 1

MCQ
रिक्त स्थान भरें

उत्तर

If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to 2.

Explanation:

`lim_{x→2^-} f(x) = lim_{x→2^-} [x - 2] + lim_{x→2^-}|x - 5|`

= `lim_{h → 0}[2 - h - 2] + lim_{h → 0}|2 - h - 5|`

= `lim_{h → 0}[-h] + lim_{h → 0}(-3 - h)`

= `lim_{h → 0} (-1) + lim_{h → 0} (3 + h)`

= -1 + 3 = 2

shaalaa.com
Limits of Exponential and Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×